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Truncation approximations for gravity-capillary free-surface flows
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Abstract. Gravity-capillary free-surface flows past disturbances in a channel of finite depth are considered. These
flows are usually assumed to extend from x=−∞ to x=∞ where the x-axis is parallel to the bottom. Many
numerical schemes truncate this infinite domain to the interval −B<x<A where A and B are large positive num-
bers. These truncations introduce inaccuracies, especially when the effect of surface tension is included. In this
paper numerical methods are presented which remove these inaccuracies. This is achieved by taking into account
the contributions from −∞ to −B and from A to ∞. Explicit computations are presented for a semi-circular
obstacle at the bottom of the channel.
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1. Introduction

Many two-dimensional potential free-surface flows occurring in hydrodynamics possess trains
of periodic waves in the far field. One example is the gravity-capillary free-surface flow
generated by disturbances moving at a constant velocity in a channel of finite depth. The
disturbance can be a submerged object (modelling a submarine), a surface piercing object
(modelling a ship) or a distribution of pressure with a compact support.

When the disturbance is small, the equations can be linearised and an analytical solution
can be derived by Fourier transforms (see [1, pp. 384–413]). On the other hand, for large
disturbances, no analytical solutions are available and the fully nonlinear equations have to
be solved numerically. This can be achieved efficiently by using boundary-integral-equation
methods [2–8]. One difficulty is that the free surface is unbounded in the horizontal direction.
Therefore it extends from x=−∞ to x=+∞ where the x-axis is parallel to the bottom.

To solve the problem numerically it is necessary to truncate it at x=−B and x=A where
A and B are large positive numbers. As we shall see, the potential function φ is often used as
an independent variable. In such a case the domain is truncated at φ=−t1 and φ= t2 where
t1 and t2 are large positive numbers. These truncations can generate numerical inaccuracies.
In this paper we derive new truncation approximations which minimise these inaccuracies.

The results presented are qualitatively independent of the form of the disturbance. Here we
assume that the disturbance is a submerged semi-circular cylinder moving at a constant veloc-
ity at the bottom of a channel (see Figure 1). This problem was considered before by Forbes
and Schwartz [3], Forbes [4] and Vanden-Broeck [6]. We take a frame of reference moving
with the disturbance. The flow is assumed to be to the right (i.e., from x=−∞ to x=∞).
We restrict our attention to steady solutions. We also concentrate on flows for which there are
trains of waves on the free surface because they are more sensitive to truncations than flows
with waveless flat free surfaces in the far field.

When surface tension is neglected, the free surface is flat at large distances in front of the
disturbance and may possess a train of waves a large distance behind the obstacle. The work
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of Forbes and Schwartz [3] shows that it is possible to obtain accurate nonlinear numerical
solutions by simply neglecting in the boundary-integral-equation formulation the contribu-
tions to the integrals from x = −∞ to x = −A and from x =B to x = ∞. There are, how-
ever, small spurious waves a large distance in front of the obstruction (i.e., for x < 0) and a
distortion in the last wavelength of the train of waves (see Figures in [4]). We show that our
improved truncation reduces greatly the amplitude of the spurious waves.

When surface tension is taken into account, the situation is much more complicated.
Firstly, there are in general trains of waves both at the front and at the back of the dis-
turbance. The numerical inaccuracy in the downstream waves resulting from truncating the
domain is restricted to approximately the last wavelength of the flow. Upstream inaccuracies
caused by truncation are even more dramatic with large-amplitude spurious waves of the same
wavelength as the downstream waves and a constantly decreasing mean free-surface elevation.
The results presented by Forbes [4] show a free surface with a constantly decreasing mean
height. We shall present numerical methods to remove these inaccuracies.

The problem in the absence of surface tension is formulated in Section 2. The numerical
procedure and the techniques to remove the inaccuracies are described in Section 3. The prob-
lems with surface tension are considered in Section 4.

2. Formulation

Let us consider the steady flow over a semi-circular obstacle of radius R at the bottom of a
channel (see Figure 1). We introduce Cartesian co-ordinates with the x-axis along the bottom
and the origin at the centre of the semi-circular obstacle. The gravity g is acting in the nega-
tive y-direction. When surface tension is neglected, the flow approaches a uniform stream as
x→−∞ with a constant velocity U and constant depth H . We introduce dimensionless vari-
ables by taking H as the unit length and U as the unit velocity.

We then define the following complex variables z=x+ iy, the complex potential f =φ+ iψ ,
and the complex velocity u− iv. Without loss of generality we choose ψ = 0 on the bottom,
so that ψ=1 on the free surface. The condition of constant pressure on the free surface can
be written

1
2
F 2(u2 +v2)+y= 1

2
F 2 +1. (1)

Here F is the Froude number defined by

F = U

(gH)1/2
. (2)

 1

x

y

U=1 g

Figure 1. Sketch of the flow configuration. When the surface tension is neglected, the free surface is flat as x→−∞
and wavy as x→∞. When the surface tension is taken into account, there is in addition a train of waves as x→
−∞. The sketch corresponds to the case without surface tension.
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Following Forbes and Schwartz [3], we define the new variable ζ = ξ + iη by the relation

ξ + iη= 1
2

(
z+ α2

z

)
, (3)

where α=R/H is the dimensionless radius of the semi-circle.
Relation (3) is the classical Joukowskii transformation; it maps the z-plane into a ζ -plane

in which the bottom streamline is a straight line. We shall seek ξ + iη as an analytic function
of f =φ+ iψ in the strip 0<ψ <1. In terms of the variable ζ(φ,ψ), Equation (1) becomes

F 2 (z
2 −α2)(z2 −α2)

8(zz)2ζφζφ
+Im[z]− 1

2
F 2 −1=0, (4)

where the bar signifies the complex conjugate and Im denotes the imaginary part.
By using Cauchy integral-equation formula, Forbes and Schwartz [3] derived the following

integral relation between ξ(φ,1) and η(φ,1):[
ξφ(φ,1)− 1

2

]
− 2
π

∫ +∞

−∞

[
ξφ(θ,1)− 1

2

]
dθ

(θ −φ)2 +4

=− 1
π

{∫ +∞

−∞
ηθ (θ,1)(θ −φ)
(θ −φ)2 +4

dθ +
∫ +∞

−∞
ηθ (θ,1)
(θ −φ) dθ

}
. (5)

The second integral on the right-hand side of the equation is a Cauchy principal value.
This concludes the formulation of the problem. For given values of α and F , we seek two

functions ξ and η satisfying (4) and (5).

3. Free-surface flows without surface tension

We describe in Section 3.1 the basic numerical procedure in which the integrals from −∞ to
∞ in (5) are truncated at finite values. Then in Section 3.2 we present an improved scheme
in which the integrals are not truncated.

3.1. Results with truncation of the integrals

The numerical method follows closely the work of Forbes and Schwartz [3] and of Forbes [4].
The reader is referred to those papers for details.

We first truncate the three integrals from −∞ to ∞ in (5) to integrals from −t1 to t2 where
t1 and t2 are large positive numbers. Then we define equally spaced points

φI =−t1 + t2 + t1
N

I, I =0, . . . ,N,

and the corresponding unknowns

ξ ′
I = ξφ(φI ,1), I =0, . . . ,N,

η′
I =ηφ(φI ,1), I =0, . . . ,N.

The problem is then discretised. In particular, the integrals are approximated by the trape-
zoidal rule or by the Simpson rule. Relations (4) and (5) yield a system of nonlinear algebraic
equations for the unknowns ξ ′

I and η′
I . This system is solved by Newton iterations. The radi-

ation condition in the absence of surface tension is equivalent to the requirement that the free



92 S. Grandison and J.-M. Vanden-Broeck

surface profile is flat as x→−∞. This is imposed by forcing η= 1/2 and ηφ = 0 at the first
mesh point φ0.

The above numerical scheme gives very good results (see [3] for examples). However, as
noted by Forbes and Schwartz, spurious small waves appear in front of the obstacle (i.e., in
the region x<0). These waves do not satisfy the radiation condition and are an artifact of the
numerical procedure. There is also a distortion in approximately the last quarter wavelength
of the downstream waves, which, although insignificant, can prevent the numerical method
from converging at large values of the Froude number.

We present in the next Section a numerical method which improves the accuracy, removes
the spurious waves and reduces the distortion.

3.2. Results without truncation of the integrals

The inaccuracies in the scheme of Section 3.1 are caused by the replacements of the integrals
from −∞ to ∞ in (5) by integrals from φ=−t1 to φ= t2.

We shall show that these inaccuracies are greatly reduced by including suitable approxima-
tions of the integrals from −∞ to −t1 and from t2 to ∞.

We consider first the integrals from −∞ to −t1. As φ→−∞, the flow approaches a uni-
form stream with velocity 1. We derive in the Appendix the general form of a perturbed uni-
form stream with a free surface. Using the facts that φ≈x and y≈2η as φ→−∞, we obtain
from (A.14)

ηφ ≈Aeλφ as φ→−∞, (6)

where A is a constant and λ is the smallest positive root of

λ− tanλ
F 2

=0. (7)

We then obtain

ξφ ≈C as φ→−∞, (8)

where C is a constant.
We now use (8) and (6) to approximate the three integrals from −∞ to −t1∫ −t1

−∞

[
ξφ(θ,1)− 1

2

]
dθ

(θ −φ)2 +4
≈
[
C− 1

2

][
1
2

arctan
−(t1 +φ)

2
+ π

4

]
, (9)

∫ −t1

−∞
ηθ (θ,1)(θ −φ)
(θ −φ)2 +4

dθ ≈A
∫ −t1

−∞
eλθ (θ −φ)
(θ −φ)2 +4

dθ, (10)

∫ −t1

−∞
ηθ (θ,1)
θ −φ dθ ≈A

∫ −t1

−∞
eλθ

θ −φ dθ. (11)

The constants A and C are found by requiring that (6) and (8) are satisfied at the last
mesh point φN .

We now consider the integrals from t2 to ∞. This is more complicated than the previous
case because there are nonlinear waves on the free surface for φ>0. However, the waves ulti-
mately approach a train of periodic waves as φ→ ∞. Therefore we assume that the waves
repeat themselves without change of shape or amplitude for φ > t2. This is a good approxi-
mation for t2 large. We define at each iteration two values p1<p2 of φ which correspond to
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the two crests of the train of waves closest to φ= t2 (i.e., the two crests further on the right
in Figure 1). We define ηφ for φ>t2 by

ηφ(t2 + s)=ηφ(t2 +p1 −p2 + s) for s <p2 −p1 (12)

and more generally

ηφ(t2 + s)=ηφ [t2 +p1 −p2 + s−n(p2 −p1)] for n(p2 −p1)<s <(n+1)(p2 −p1). (13)

Here s >0 and n is a positive integer.
Similarly we write

ξφ(t2 + s)= ξφ [t2 +p1 −p2 + s−n(p2 −p1)] for n(p2 −p1)<s <(n+1)(p2 −p1). (14)

We approximate the integrals from t2 to ∞ by summations using the trapezoidal rule, thus

∫ ∞

t2

[
ξφ(θ,1)− 1

2

]
dθ

(θ −φ)2 +4
≈
Nmax∑
n=1

p2∑
s=p1

h
ξφ [s]− 1

2

(θs +h(p2 −p1)(n−1)−φ)2 +4
, (15)

∫ ∞

t2

ηθ (θ,1)(θ −φ)
(θ −φ)2 +4

dθ ≈
Nmax∑
n=1

p2∑
s=p1

h
ηφ [s](θs +h(n−1)−φ)

(θs +h(p2 −p1)(n−1)−φ)2 +4
, (16)

∫ ∞

t2

ηθ (θ,1)
(θ −φ) dθ ≈

Nmax∑
n=1

p2∑
s=p1

h
ηφ [s]

θs +h(p2 −p1)(n−1)−φ , (17)

where h is the separation between mesh points and Nmax>>1.
Relations (12–14) define ηφ and ξφ for φ > t2 in terms of their values for φ < t2. This

enables us to extend the trapezoidal (or Simpson) rule approximation of the integrals in (2.5)
to values of φ much larger than t2 without introducing extra unknown ξI and ηI or increas-
ing significantly the computing time. Figure 2 shows a typical free-surface profile. We note
the elimination of waves upstream of the disturbance. Figure 3 shows the upstream surface in
more detail. All results presented were obtained with N = 300 mesh points. We checked that
these results are correct within graphical accuracy by varying N .

Making the above downstream approximation removes the distortion in the last quarter
wavelength experienced by Forbes and Schwartz [3], and allows us to compute solutions for
flow speeds greater than that computed by these authors. Convergence was obtained for val-
ues of the Froude number up to F = 0·555, for α= 0·2 (see Figure 4), which is close to the
maximum flow speed of F =0·6, conjectured by [3] where wave-like solutions might be found.

The profile of Figure (4) contains highly nonlinear waves with sharp crests and broad
troughs. This profile demonstrates that the radiation condition is effectively satisfied and that
there is no downstream distortion.

4. Free surface flows with surface tension

When surface tension is included the kinematic boundary condition remains unchanged but
the dynamic boundary condition becomes

1
2
F 2(u2 +v2)+y−WK= 1

2
F 2 +1, (18)
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Figure 2. Free-surface flow for α=0·2, F =0·4.
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Figure 3. Free-surface flow for α = 0·2, F = 0·4. The
upstream free-surface is shown in more detail to high-
light the absence of waves.
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Figure 4. Free-surface flow for α=0·2, F =0·555.

where K is the local curvature at the free surface and W is the Weber Number defined by

W = T

ρgH 2
.

Here T is the surface tension.
Following Forbes [4] we obtain

1
8
F 2 (z

2 −α2)(z2 −α2)

(zz)2(ζφζ φ)
+Im[z]− 1

2
F 2 −1− 1

4
iT
(z2 −α2)

1
2 (z2 −α2)

1
2

(zz)(ζφζ φ)
3
2

[
(ζφζ φφ − ζφζφφ)

+4α2(ζφζ φ)

[
zζφ

(z2 −α2)2
− zζφ

(z2 −α2)2

]]
=0. (19)

This expression is similar to (4) but contains an extra term which relates to the curvature at
the free surface.

When surface tension is included, there are in general trains of waves both upstream and
downstream. We use the method described in Section (3.2) to approximate the integrals from
t2 to +∞. The method used in Section 3.2 to approximate the integral from −∞ to −t1 is
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no longer applicable because of the upstream train of waves. Here we use a generalisation of
the approach developed by Vanden-Broeck [9] to calculate Wilton’s ripples.

Vanden-Broeck’s approach consists of approximating ηφ in −∞<φ<A by

ηφ =D sin(kφ+ω), (20)

where D, k and θ have to be found as part of the solution.
Relation (20) approximates the waves in −∞<φ<A by linear waves. It is therefore a good

approximation if these waves are of small amplitude.
An extension of (20) consists of writing

ηφ =
N∑
n=1

Dn sin(nkφ+ θ). (21)

Relation (21) is now an approximation for nonlinear waves and is exact in the limit N→∞.
The constants D1,D2, . . . ,DN , k and θ are found by fitting values of ηφ at points on the dis-
cretised mesh close to A.

We repeated the calculations for different values of N and checked that the results pre-
sented are independent of N .

This truncation procedure enables us to confirm and improve the results of Forbes [4]. The
results presented by Forbes do not have a constant mean upstream height and the upstream
wavelength is also too high. Furthermore the distortion that occurs in the T =0 case is even
more pronounced in the T �=0 case and extends over two wavelengths.

In Figure 5 we present results in the absence of surface tension to contrast them to the
gravity-capillary solution of Figure 6. As can be seen in Figure 6 the modified model not
only demonstrates the existence of a solution with a train of waves both upstream and down-
stream but the previous problems associated with this computation, namely the decreasing
mean height of the upstream waves and the violation of the radiation condition has been
eliminated. Linear theory predicts an upstream wavelength of λ≈ 0·8796 and a downstream
wavelength of λ≈3·4247; these predictions agree to within 2% of the full numerical scheme.
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Figure 5. Free-surface flow for α=0·05, F =0·8, W =0.
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Figure 6. Free-surface flow for α = 0·05, F = 0·8, T =
0·07.
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5. Discussion

A numerical model for free-surface flow over a semicircular obstacle, based on the work of
Forbes and Schwartz [3] has been investigated. We solved the exact nonlinear equations using
the complex potential f rather than physical co-ordinates; this has the advantage of trans-
forming the problem into a frame where the free surface is known. The model is further
developed by choosing a conformal mapping to eliminate singularities along the bottom of
the channel. The nonlinear equations are then discretised by means of the trapezoidal rule
and solved by a modified Newtonian iteration scheme.

Inaccuracies in previous models, namely the violation of the radiation condition and the
distortion of downstream waves close to the point of truncation have been eliminated by use
of appropriate approximations of the flow far upstream and downstream of the obstacle.

These approximations are general and can be used for any gravity-capillary free-surface
flow past a disturbance.
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Appendix A. Far-field solution

In this appendix, we derive briefly the solution for the perturbation of a uniform stream with
constant velocity U and constant depth H . The flow domain is bounded above by a free sur-
face and below by a horizontal bottom.

The exact equations are

φxx +φyy =0, (A.1)

φy =φxfx on y=f (x), (A.2)

φ2
x +φ2

y

2
+gf = U2

2
+gH on y=f (x), (A.3)

φy =0 on y=0. (A.4)

Here φ(x, y) is the potential function, g is the acceleration of gravity and y = f (x) is the
equation of the free surface. We now write

φ(x, y)=Ux+ϕ(x, y), (A.5)

f (x)=H +h(x), (A.6)

where ϕ(x, y) and h(x) are assumed to be small perturbations.
Substituting (A.5) and (A.6) in (A.1–A.4) and keeping only the terms linear in ϕ and h

yields

ϕxx +ϕyy =0, (A.7)

ϕy =Uhx on y=H, (A.8)
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Uϕx +gh=0 on y=H, (A.9)

ϕy =0 on y=0. (A.10)

Eliminating h between (A.9) and (A.10) gives

U2ϕxx +gϕy =0. (A.11)

Solving (A.7) by separations of variables and using (A.10) yield

ϕ=Beβx cosβy. (A.12)

Here B and β are constants. We assume that β <0 when x >0 and that β >0 when x <0, so
that the flow reduces to a uniform stream as |x|→∞.

Substituting (A.12) in (A.11) yields

F 2βH = tanβH, (A.13)

Finally a substitution of (A.12) in (A.8) gives after integration

h(x)=Deβx, (A.14)

where D is a constant.
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